Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Acta Haematol ; 146(2): 137-143, 2023.
Article in English | MEDLINE | ID: covidwho-2271180

ABSTRACT

BACKGROUND: Management of anticoagulant therapy in COVID-19 patients is critical. Low-molecular-weight heparin (LMWH) thromboprophylaxis is already recommended, and anti-Factor Xa (anti-FXa) monitoring has been used to titrate LMWH doses. METHODS: Through a cross-sectional study, we evaluated anti-FXa activity in patients admitted to the ICU, receiving intermediate dose (30, 40, 50 mg, subcutaneously [SC], twice daily) or therapeutic dose (1 mg/kg, SC, Q12h) of enoxaparin to find whether the patients in these two groups achieved anti-FXa levels in the accepted thromboprophylaxis range. RESULTS: The occurrence of deep vein thrombosis was 26% in the therapeutic-dose group and 17% in the intermediate-dose group. D-dimer values were nearly 3.5-fold higher in those who received a therapeutic dose of anticoagulants than in those who received intermediate-dose thromboprophylaxis. Patients in the therapeutic-dose group had significantly higher IL-6 levels (p ≤ 0.001). More than one-third of the patients in the therapeutic-dose group (n = 8; 42.18%) and approximately half of the patients in the intermediate-dose group (n = 12; 52.2%) achieved the target range level of anti-FXa. Patients who received therapeutic doses were more likely to have anti-FXa levels above the expected range (47.4 vs 13% in the intermediate-dose group; p < 0.05). CONCLUSION: Therapeutic dose of enoxaparin in critically ill COVID-19-infected patients did not reduce the incidence of thromboembolic events and, on the other hand, may predispose these patients to increased risk of bleeding by increasing anti-FXa activity above the desired level. Administration of intermediate-dose thromboprophylaxis is suggested to achieve anti-FXa levels in the accepted thromboprophylaxis range.


Subject(s)
COVID-19 , Venous Thromboembolism , Humans , Enoxaparin/therapeutic use , Enoxaparin/pharmacology , Anticoagulants , Heparin, Low-Molecular-Weight/therapeutic use , Factor Xa , Cross-Sectional Studies , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Venous Thromboembolism/drug therapy , Factor Xa Inhibitors/therapeutic use
3.
Biomolecules ; 12(9)2022 09 15.
Article in English | MEDLINE | ID: covidwho-2043569

ABSTRACT

Novel and efficient strategies need to be developed to interfere with the SARS-CoV-2 virus. One of the most promising pharmaceutical targets is the nucleocapsid protein (N), responsible for genomic RNA packaging. N is composed of two folded domains and three intrinsically disordered regions (IDRs). The globular RNA binding domain (NTD) and the tethered IDRs are rich in positively charged residues. The study of the interaction of N with polyanions can thus help to elucidate one of the key driving forces responsible for its function, i.e., electrostatics. Heparin, one of the most negatively charged natural polyanions, has been used to contrast serious cases of COVID-19 infection, and we decided to study its interaction with N at the molecular level. We focused on the NTR construct, which comprises the NTD and two flanking IDRs, and on the NTD construct in isolation. We characterized this interaction using different nuclear magnetic resonance approaches and isothermal titration calorimetry. With these tools, we were able to identify an extended surface of NTD involved in the interaction. Moreover, we assessed the importance of the IDRs in increasing the affinity for heparin, highlighting how different tracts of these flexible regions modulate the interaction.


Subject(s)
Enoxaparin , Nucleocapsid Proteins , SARS-CoV-2 , COVID-19 , Enoxaparin/pharmacology , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Polyelectrolytes , RNA , SARS-CoV-2/drug effects
4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1809941

ABSTRACT

Neutrophil Extracellular Traps (NETs) are a contributing factor of vascular thrombosis and alveolar damage in COVID-19 patients. As enoxaparin is currently used to inhibit vascular thrombosis, this study aimed to investigate whether enoxaparin also reduced inflammation and NETs in COVID-19 patients. Patients with COVID-19 infection were classified into three groups: mild, moderate, and severe (n = 10 for all groups). Plasma was collected from patients and healthy donors (n = 10). Neutrophils isolated from healthy controls were incubated with COVID-19 or healthy plasma, and with or without enoxaparin pretreatment in vitro. Neutrophils and plasma isolated from patients treated with enoxaparin were also investigated. The levels of inflammatory cytokines and NET products such as dsDNA, NE, MPO-DNA and Histone-DNA complexes in plasma and supernatants were measured using immunofluorescence staining and ELISA kits. The expression of inflammatory signaling genes by neutrophils (RELA, SYK, ERK and PKC) was measured using real-time qPCR. The levels of NET products were elevated in the plasma of COVID-19 patients, particularly in the severe group (p < 0.01). Moreover, plasma from the severe group enhanced NET formation (p < 0.01) from neutrophils in vitro. Enoxaparin pretreatment in vitro decreased plasma-induced NETs in a dose-dependent manner and down-regulated the expression of inflammatory genes (p < 0.05). Patients treated with prophylactic enoxaparin showed lower inflammatory cytokine levels and expression of inflammatory genes (p < 0.05). Increased NETs were associated with the severity of COVID-19 infection, particularly in patients with severe pneumonia, and could be used as biomarkers to assess disease severity. Enoxaparin pretreatment inhibited NETs and reduced the expression of inflammatory cytokines, and these effects mostly persisted in patients treated with prophylactic enoxaparin.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Thrombosis , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , DNA/metabolism , Enoxaparin/pharmacology , Enoxaparin/therapeutic use , Extracellular Traps/metabolism , Humans , Neutrophils/metabolism , Thrombosis/drug therapy , Thrombosis/metabolism
5.
Biomed Pharmacother ; 149: 112920, 2022 May.
Article in English | MEDLINE | ID: covidwho-1767922

ABSTRACT

Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.


Subject(s)
COVID-19 , Thromboplastin , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Critical Illness , Enoxaparin/pharmacology , Enoxaparin/therapeutic use , Heparin , Humans , Pandemics , Thromboplastin/metabolism
6.
Sci Rep ; 12(1): 5207, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1764204

ABSTRACT

The cell surface serine protease Transmembrane Protease 2 (TMPRSS2) is required to cleave the spike protein of SARS-CoV-2 for viral entry into cells. We determined whether negatively-charged heparin enhanced TMPRSS2 inhibition by alpha-1-antitrypsin (AAT). TMPRSS2 activity was determined in HEK293T cells overexpressing TMPRSS2. We quantified infection of primary human airway epithelial cells (hAEc) with human coronavirus 229E (HCoV-229E) by immunostaining for the nucleocapsid protein and by the plaque assay. Detailed molecular modeling was undertaken with the heparin-TMPRSS2-AAT ternary complex. Enoxaparin enhanced AAT inhibition of both TMPRSS2 activity and infection of hAEc with HCoV-229E. Underlying these findings, detailed molecular modeling revealed that: (i) the reactive center loop of AAT adopts an inhibitory-competent conformation compared with the crystal structure of TMPRSS2 bound to an exogenous (nafamostat) or endogenous (HAI-2) TMPRSS2 inhibitor and (ii) negatively-charged heparin bridges adjacent electropositive patches at the TMPRSS2-AAT interface, neutralizing otherwise repulsive forces. In conclusion, enoxaparin enhances AAT inhibition of both TMPRSS2 and coronavirus infection. Such host-directed therapy is less likely to be affected by SARS-CoV-2 mutations. Furthermore, given the known anti-inflammatory activities of both AAT and heparin, this form of treatment may target both the virus and the excessive inflammatory consequences of severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Enoxaparin , Enoxaparin/pharmacology , HEK293 Cells , Humans , SARS-CoV-2 , Serine Endopeptidases
7.
Int J Mol Sci ; 23(5)2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1732066

ABSTRACT

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Enoxaparin/pharmacology , Furin/antagonists & inhibitors , Spermine/analogs & derivatives , Zeaxanthins/pharmacology , Amino Acid Chloromethyl Ketones/chemistry , Amino Acid Chloromethyl Ketones/metabolism , COVID-19/transmission , COVID-19/virology , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Enoxaparin/chemistry , Enoxaparin/metabolism , Furin/chemistry , Furin/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Proteolysis , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spermine/chemistry , Spermine/metabolism , Spermine/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Virus Replication , Zeaxanthins/chemistry , Zeaxanthins/metabolism
9.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: covidwho-1048660

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Drug Evaluation, Preclinical , Enoxaparin/chemistry , Enoxaparin/metabolism , Enoxaparin/pharmacology , Genetic Vectors/genetics , HEK293 Cells , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Inhibitory Concentration 50 , Lentivirus/genetics , Molecular Structure , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transduction, Genetic , Virus Attachment/drug effects
10.
Thromb Haemost ; 120(12): 1700-1715, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-998020

ABSTRACT

The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.


Subject(s)
Anticoagulants/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Enoxaparin/pharmacology , Heparin/pharmacology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Enoxaparin/therapeutic use , Heparin/therapeutic use , Humans , Molecular Dynamics Simulation , Nebulizers and Vaporizers , Protein Binding , Protein Conformation , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Structure-Activity Relationship , Vero Cells , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL